Breeding for Hypoallergenic Peanuts in the EU

Hernán Capador, Swedish University of Agricultural Sciences
Muhammad Bilal Sharif, UniLaSalle Beauvais.
Sibel Sökel, Ege University, Seed Science and Technology.
Nicolas Peille, UniLaSalle Beauvais
Jorge Ribes Revert, Polytechnic University of Valencia - UPV
Overview

1. Crop introduction
2. Market in EU
3. Breeding Idea
4. Breeding Goals
5. Stakeholders
6. SWOT Diagram
Peanut / Groundnut (*Arachis hypogea L.*)

Agronomy:

- Leguminosae: nitrogen fixing
- Allotetraploid
- Drought & Salt tolerant
- Mechanized
- 4 months, May-october

Rotation:
- Winter wheat
 - Barley
 - June
- Peanut
 - 4-5 months
- Winter wheat
 - Sugar beet
 - Barley
 - End of October
Peanuts in the EU

550,000 T of peanuts consumed in Europe - 99% imported, Argentina main exporter

Already grown: Spain, Portugal, Bulgaria, Cyprus

PepsiCo recently introduced varieties to Spain and Portugal to supply their production needs.
Less allergic peanuts adapted to mediterranean conditions
Breeding Goals:

Primary Traits:
Hypoallergenicity, Yield, Seed size, Taste

Secondary Traits:
Oil quality, Disease resistance, Blanchability

Evaluation of landraces and currently cultivated varieties
Germplasm banks from public institutions:
COMAV Spain
ICRISAT India
USDA USA
EMBRAPA Brazil
INTA Argentina
Stakeholders

Breeding Program
- Buy certified seeds
- Contract

Farmers
- Sold production
- Varieties adapted
- N fixation

Food companies (e.g. PepsiCo)
- Fully Supply EU Market
- Better control Final Product

Public Health
- Less allergic
- Healthier Product

Consumer
- Trusted product
- High Quality
- Less allergic
- Healthier Product
Allergenicity in Peanut

Affects 1-2% world's population
Commonest fatal food-related allergic reactions
Allergy rate doubled over a 5-year period in Europe
13 peanut allergens (Ara h 1 - Ara h 13) - 15-20% of the total seed protein.
Ara h1 affects more than 90% of peanut-sensitive individuals

Techniques:
 Tilling
 Crispr-cas
Taste Quantity (Fat)

<table>
<thead>
<tr>
<th>Peanut (1 oz.)</th>
<th>Saturated Fat</th>
<th>Monounsaturated Fat</th>
<th>Polyunsaturated Fat</th>
<th>Total Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Peanut</td>
<td>1.9 g</td>
<td>6.9 g</td>
<td>4.4 g</td>
<td>14 g</td>
</tr>
<tr>
<td>Dry Roasted, Salted Peanuts</td>
<td>2.0 g</td>
<td>7.0 g</td>
<td>4.5 g</td>
<td>14.1 g</td>
</tr>
<tr>
<td>Oil-Roasted, Salted Peanuts</td>
<td>2.5 g</td>
<td>7.4 g</td>
<td>4.3 g</td>
<td>14.9 g</td>
</tr>
<tr>
<td>Peanut Butter, smooth style, with salt (2tbsp.)</td>
<td>3.3 g</td>
<td>7.6 g</td>
<td>4.4 g</td>
<td>16.1 g</td>
</tr>
</tbody>
</table>

- Treated peanut’s saturated fat is higher than raw peanuts.
- Saturated fat acids are very low.

Blanchability (Skin removed from kernel by heating followed by abrasion)

- Blanchability is under strong genetic control.
- The genetic control and breeding potential for the blanching trait in order to better select parents for the breeding of improved blanchability.
- Early generation selection - Blanched %
- Shokraii et al. (1985) referred to a 36-kD polypeptide related to blanchability in peanuts. It is probable that the same polypeptide is identified as the 38-kD band in Bianchi-Hall et al. (1994) study.
Strengths

- Germplasm adapted to Mediterranean Cond.
- Easy access to Public germplasms
- Breeding in the production region

Weaknesses

- New in this crop (Practical knowledge)
- No starting funds

Opportunities

- European production is rising
- Not yet hypoallergenic varieties in the market
- European consumers are receptive to hypoallergenic and healthy products
- No european peanut breeding companies
- Already existing Interest/ Market
- Aflatoxins lower with EU farm management
- Secure - Food chain supply

Threats

- Public foreign competitors (USDA, China, India, Brazil, Argentina)
- Aranex Biotech
- Cost of production in Europe
Thank you for your attention